Class SVMBasedMethods

Direct Known Subclasses:
MSVM_RFE, OVA_SVM_RFE, OVO_SVM_RFE, SVM_RFE

public abstract class SVMBasedMethods extends EmbeddedApproach
The abstract class contains the main methods and fields that are used in all SVM-based feature selection methods. This class inherits from EmbeddedApproach class.
Author:
Sina Tabakhi
See Also:
  • Field Details

    • TEMP_PATH

      protected final String TEMP_PATH
    • kernelType

      protected SVMKernelType kernelType
    • parameterC

      protected double parameterC
    • classLabelInTrainSet

      protected double[] classLabelInTrainSet
  • Constructor Details

    • SVMBasedMethods

      public SVMBasedMethods(Object... arguments)
      Initializes the parameters
      Parameters:
      arguments - array of parameters contains (path, kernelType, Parameter c) in which path is the path of the project, kernelType is the type of kernel to use, and Parameter c is the complexity parameter C
    • SVMBasedMethods

      public SVMBasedMethods(String path, SVMKernelType kernelType, double c)
      Initializes the parameters
      Parameters:
      path - the path of the project
      kernelType - the type of kernel to use
      c - the complexity parameter C
  • Method Details

    • createClassLabel

      public void createClassLabel()
      Creates an array of class labels available in the train set
    • buildSVM_OneAgainstOne

      protected double[][][] buildSVM_OneAgainstOne(int[] selectedFeature)
      Generates binary classifiers (SVM) using input data and based on selected feature subset, and finally returns the weights of features. One-Versus-One strategy is used to construct classifiers in multiclass classification.
      Parameters:
      selectedFeature - an array of indices of the selected feature subset
      Returns:
      an array of the weights of features
    • buildSVM_OneAgainstRest

      protected double[][] buildSVM_OneAgainstRest(int[] selectedFeature)
      Generates binary classifiers (SVM) using input data and based on selected feature subset, and finally returns the weights of features. One-Versus-All strategy is used to construct classifiers in multiclass classification.
      Parameters:
      selectedFeature - an array of indices of the selected feature subset
      Returns:
      an array of the weights of features