Class MGSACO
java.lang.Object
unifeat.featureSelection.FeatureSelection
unifeat.featureSelection.filter.FilterApproach
unifeat.featureSelection.filter.unsupervised.MGSACO
This java class is used to implement the microarray gene selection based on
ant colony optimization (MGSACO) method.
- Author:
- Sina Tabakhi
- See Also:
-
Field Summary
Fields inherited from class unifeat.featureSelection.FeatureSelection
numClass, numFeatures, numSelectedFeature, selectedFeatureSubset, trainSet
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
Starts the feature selection process by microarray gene selection based on ant colony optimization (MGSACO) methodvalidate()
This method returns the potential errors in the input parameters.Methods inherited from class unifeat.featureSelection.filter.FilterApproach
newMethod
Methods inherited from class unifeat.featureSelection.FeatureSelection
getSelectedFeatureSubset, loadDataSet, loadDataSet, setNumSelectedFeature
-
Constructor Details
-
MGSACO
Initializes the parameters- Parameters:
arguments
- array of parameter contains (sizeSelectedFeatureSubset
,initPheromone
,numIterations
,numAnt
,evaporationRate
,betaParameter
,q0_Parameter
) in whichsizeSelectedFeatureSubset
is the number of selected features,initPheromone
is the initial value of the pheromone,numIterations
is the maximum number of iteration,numAnt
is the number of ants,evaporationRate
is the evaporation rate of the pheromone,betaParameter
is the beta parameter in the state transition rule, andq0_Parameter
is the q0 parameter in the state transition rule
-
MGSACO
public MGSACO(int sizeSelectedFeatureSubset, double initPheromone, int numIterations, int numAnt, double evaporationRate, double betaParameter, double q0_Parameter) Initializes the parameters- Parameters:
sizeSelectedFeatureSubset
- the number of selected featuresinitPheromone
- the initial value of the pheromonenumIterations
- the maximum number of iterationnumAnt
- the number of antsevaporationRate
- the evaporation rate of the pheromonebetaParameter
- the beta parameter in the state transition ruleq0_Parameter
- the q0 parameter in the state transition rule
-
-
Method Details
-
evaluateFeatures
public void evaluateFeatures()Starts the feature selection process by microarray gene selection based on ant colony optimization (MGSACO) method- Specified by:
evaluateFeatures
in classFeatureSelection
-
validate
This method returns the potential errors in the input parameters.- Overrides:
validate
in classFeatureSelection
- Returns:
- a string contains the information about incorrect parameters
-