
Universal Feature Selection Tool

User Manual, Version 1.0

Sina Tabakhi, Parham Moradi

June 2022

Contents
Acknowledgments 2

About the Authors 3

1 Introduction 4

2 Background 6

3 Introduction to UniFeat 8

4 Download and run 10

5 The UniFeat exploration 11
5.1 Panel description . 11

5.1.1 Loading the dataset files . 11
5.1.2 Choosing a feature selection method 13
5.1.3 Feature subset sizes . 14
5.1.4 Selecting classifier . 15
5.1.5 Run configuration . 15

5.2 Menu items description . 17
5.2.1 Preprocessing of the data . 17
5.2.2 Drawing a diagram . 17
5.2.3 Analyzing the results . 17
5.2.4 Help file . 20

6 Using UniFeat as a library 21
6.1 Reading dataset files . 21
6.2 Performing feature selection . 21
6.3 Creating reduced datasets . 23

7 Extending UniFeat 25
7.1 Adding a feature selection method to UniFeat 25

7.1.1 Adding a new filter-based method 26
7.1.2 Adding a new wrapper-based method 27
7.1.3 Adding a new embedded-based method 29

7.2 Creating a parameter settings panel in UniFeat 29

References 34

A An example source code for feature selection 35

1

Acknowledgments
The UniFeat is implemented and developed principally by Sina Tabakhi and Parham
Moradi, but other people make essential contributions. We are grateful to Mr. Shahin
Salavati, who implemented most of the graphical user interfaces. We also thank the
professors who provided us with feedback about the tool, especially Dr. Fardin Akhlaghian
at the University of Kurdistan and Dr. Haiping Lu at the University of Sheffield.

2

About the Authors
Sina Tabakhi is currently a Ph.D. student in the Department of Computer Science at
the University of Sheffield, United Kingdom, working in the Machine Learning Research
Group. Before joining the University of Sheffield, he had worked in the industry as
a software engineer for five years. He graduated with a Master’s degree as the first
honor student in Computer Engineering, Artificial Intelligence from the University of
Kurdistan, Iran. He has been working on efficient feature selection methods for integrative
multi-omics analysis to tackle the curse of the dimensionality phenomenon of these data
types.

Parham Moradi received the M.Sc. and Ph.D. degrees in Computer Science from
Amirkabir University of Technology, Iran, in 2005 and 2011, respectively. He conducted
a part of his Ph.D. research work in the Laboratory of Nonlinear Systems, Ecole Poly-
technique Federal de Lausanne (EPFL), Lausanne, Switzerland, from September 2009
to March 2010. He is currently an associate professor in the Department of Computer
Engineering at the University of Kurdistan, Iran. His research focuses on machine
learning, social network analysis, recommender systems, and deep learning.

3

1 Introduction
The field of data mining is concerned with knowledge discovery from data through the
development of computer programs. During the last two decades, the rapid advances in
data acquisition capacity and database technology have led to the production of datasets
with large numbers of features in many fields [9]. Most of the features are irrelevant and
redundant, and these unnecessary features have stimulated a phenomenon in the data
mining methods [6]. Therefore, data preprocessing plays an essential role in the data
mining domain. Feature selection is regarded as an important and active research area
in data preprocessing.

Feature selection is the process of identifying a subset of relevant features in an original
feature set [27, 26]. Up to now, many feature selection methods have been proposed. From
one aspect, these methods can be classified into four approaches, including filter, wrapper,
embedded, and hybrid [29, 21, 22]. The filter approach estimates the relevance of features
using intrinsic properties of the data without the need for any learning algorithms. This
approach can be subdivided into univariate and multivariate [29, 25, 2]. The univariate
filter approach examines the relevance of each feature individually based on a given
criterion. In contrast, the multivariate filter approach selects a subset of features by
considering the dependencies between features. The wrapper approach integrates a
specific learning algorithm to evaluate different subsets of selected features within the
feature selection process. The embedded approach considers the feature selection process
as part of constructing a given learning algorithm. Finally, the hybrid approach uses
filter-based methods to reduce the original feature set in the first step and then applies
wrapper-based techniques to select the final feature set.

From another aspect, the feature selection methods can be classified into supervised
and unsupervised modes [9, 21]. In the supervised mode, the class labels of data are
applied in the feature selection process as a guide, but in the unsupervised mode, the
process of feature selection is done without using class labels.

Although many feature selection methods based on different approaches have been
proposed in the literature, no attempt has been made to develop a tool bringing well-known
and state-of-the-art methods together as a benchmark for a comprehensive comparison
of their performance. Besides, most current tools focus on only one approach and ignore
the others. Furthermore, some researchers prefer to use graphical user interfaces (GUIs)
rather than command-line environments, but most of the available tools do not provide
any GUIs (See Section 2 for more details about the shortcomings of the previous tools).

Thus, our aim to develop the Universal Feature Selection Tool (UniFeat) as a compre-
hensive feature selection tool includes six aspects. (1) UniFeat implements well-known
and state-of-the-art feature selection methods within a unified framework. (2) UniFeat
can be considered a benchmark tool due to the development of methods in all the
approaches. (3) The functions presented in UniFeat provide essential auxiliary tools
needed for performance evaluation, results visualization, and statistical analysis. (4)
UniFeat has been entirely implemented in Java and can be run on various platforms. (5)

4

Researchers are able to use UniFeat through its GUI environment or as a library in their
Java codes. (6) Finally, the open-source nature of UniFeat can help researchers use and
modify the tool to fit their research requirements and greatly facilitate them to share
their methods with the scientific community rapidly.

5

2 Background
Several tools have been developed so far for the feature selection task. We compared
UniFeat to existing tools that have implemented feature selection methods, and the
comparison results are provided in Table 2.1. Based on the main focuses of these tools,
they can be classified into two categories: data mining and feature selection tools. Data
mining tools provide a general-purpose environment for machine learning models, and
feature selection can be considered only a small part of these tools. Weka [12], RapidMiner
[14], Mulan [37], MLC++ [18], and Spider1 are well-known data mining tools. Weka is
general-purpose software for data mining, but its feature selection part does not consist
of representative and state-of-the-art methods. It provides only a few conventional
feature selection methods based on the filter and wrapper approaches. RapidMiner is an
integrated platform for the generation of machine learning models. Many representative
filter-based feature selection methods are implemented in this software, but state-of-the-
art ones are missing. Furthermore, only a few baseline methods based on the wrapper
and embedded approaches are available in the RapidMiner repository. Mulan is an
open-source Java library that provides simple baseline feature selection methods without
any GUI. MLC++ is another data mining tool developed based on C++ at Stanford
University. This tool implements only some wrapper-based methods, and the other two
categories have been ignored in the library. Spider is intended to be an environment
for machine learning in MATLAB, while its feature selection part involves a few basic
filter and embedded methods. This tool does not have any GUI and works only in the
command-line environment.

On the other hand, feature selection tools are designed specifically for the feature
selection task and provide various feature selection methods. The ASU feature selection
repository (ASUFS)2, GALGO [36], FEAST [4], and LOFS [40] are some available
feature selection tools. ASUFS is a software package based on Python that implements
many conventional and well-known filter-based feature selection algorithms. This tool
also implements only traditional wrapper-based methods and neglects the embedded
approach. GALGO was developed based on the R language, which focuses only on
genetic algorithms as a wrapper approach. It is not an open-source tool and does not
provide any GUI. FEAST is a feature selection tool developed on the basis of MATLAB
and implements only standard mutual information based on filter methods without any
GUI. LOFS has been released recently and is an open-source library for online streaming
feature selection tasks. This tool, developed in MATLAB, consists of only a few online
filter-based methods.

1http://people.kyb.tuebingen.mpg.de/spider/
2https://jundongl.github.io/scikit-feature/

6

http://people.kyb.tuebingen.mpg.de/spider/
https://jundongl.github.io/scikit-feature/
https://jundongl.github.io/scikit-feature/
http://people.kyb.tuebingen.mpg.de/spider/
https://jundongl.github.io/scikit-feature/

Table 2.1: Comparison of UniFeat to existing feature selection tools.

Tool Main Focus Language Open-source GUI Feature Selection Approach

Filter Wrapper Embedded

Weka [12] Data Mining Java ✓ ✓ Consists of a small number
of conventional methods.

Few baseline methods have
been implemented.

-

RapidMiner [14] Data Mining Java ✓ ✓ Many representative meth-
ods have been implemented
but state-of-the-art ones
are missing.

Few baseline methods have
been implemented.

Few baseline methods have
been implemented.

Mulan [37] Multi-label learning Java ✓ - Few baseline methods have
been implemented.

- -

Spider Data Mining MATLAB ✓ - Only small number of basic
methods have been imple-
mented.

- Few baseline methods have
been implemented.

MLC++ [18] Data Mining C++ - - - Includes many representa-
tive methods.

-

GALGO [36] Feature selection R - - - Only genetic algorithm has
been implemented.

-

ASUFS Feature selection Python ✓ ✓ Many conventional and
well-known methods have
been implemented but
state-of-the-art ones are
missing.

Few baseline methods are
provided.

-

FEAST [4] Feature selection MATLAB ✓ - Provides implementa-
tions of standard mutual
information-based meth-
ods.

- -

LOFS [40] Online feature selection MATLAB ✓ - - Some online methods have
been implemented.

-

UniFeat Feature selection Java ✓ ✓ Many well-known and state-
of-the-art methods have
been implemented.

Consists of some well-
known and state-of-the-art
methods.

Some baseline and well-
known methods are pro-
vided.

7

3 Introduction to UniFeat
The Universal Feature Selection Tool (UniFeat) is an open-source Java tool for feature
selection, developed at the University of Kurdistan, Iran, and distributed under the MIT
License3 terms. The project aims to create a unified framework for researchers applying
feature selection.

For simplification of the development of the tool, UniFeat was divided into six main
packages, including (1) featureSelection, (2) dataset, (3) classifier, (4) gui, (5) result, and
(6) util (as shown in Figure 3.1), used for the following purposes.

featureSelection

dataset

gui

classifier

result

filter

wrapper

embedded

featureSelection

classifier

menu

supervised

unsupervised

UniFeat

util

Figure 3.1: UniFeat packages.

1. featureSelection package: provides all the feature selection methods implemented
in the tool. This package is divided into three sub-packages to cover all the feature
selection approaches. Moreover, filter-based feature selection methods have been
split into supervised and unsupervised packages. The current feature selection
methods in the UniFeat repository are based on the filter, wrapper, and embedded
approaches. The unified interface of the package allows researchers to implement
their feature selection methods and share them with the other researchers in the
feature selection community.

2. dataset package: is used for loading, saving, editing, and exporting different
types of dataset files.

3. classifier package: collects several well-known and frequently used classifiers from
the Weka software package [12].

4. gui package: provides GUIs that display the entire graphical representation of
the panels for interaction with the user. Moreover, the package reports the results
visually. It should be noted that this package has been separated from the others.

5. result package: reports the performance results of feature selection methods
based on several criteria such as accuracy and execution time.

3https://opensource.org/licenses/MIT

8

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

6. util package: presents various utility methods for manipulating arrays and matrices
and performing basic statistical operations that can be used in the feature selection
methods.

UniFeat is entirely implemented in Java, and it can thus be run on any platform where
Java Runtime Environment (JRE) is installed.

9

4 Download and run
Two types of files are provided for the UniFeat:

1. The executable file of UniFeat (version 0.1.0) that can be downloaded from the
project website4.

2. The source-code of UniFeat (version 0.1.0) which is available in the GitHub reposi-
tory5.

After downloading the tool, you must have the Java Runtime Environment (JRE) on
your system to run it. Also, if you want to use the source codes and modify them, you
need the Java Development Kit (JDK) to compile the modified source codes again.

You can start the UniFeat as a graphical user interface by clicking the UniFeat-
v0.1.0.jar file or by typing the following command from the command prompt:

java -jar UniFeat-v0.1.0.jar

Figure 4.1 shows the initial panel of the UniFeat. This panel is used to select a
workspace path for the tool. It should be noted that some essential files will be created
in this path.

Figure 4.1: Workspace selection panel.

The easiest way to use UniFeat is through its graphical user interface. Another way is
to use UniFeat as a library (using UniFeat-v0.1.0.jar) for researchers who use feature
selection as a part of their own methods and, therefore, prefer to embed the UniFeat
feature selection methods in their Java codes. The detailed information is described in
Section 6.

4https://unifeat.github.io/software.html
5https://github.com/UniFeat/unifeat

10

https://unifeat.github.io/software.html
https://github.com/UniFeat/unifeat
https://github.com/UniFeat/unifeat
https://unifeat.github.io/software.html
https://github.com/UniFeat/unifeat

5 The UniFeat exploration
After running UniFeat and selecting a workspace for the tool, you will see the main panel
of the tool, which is illustrated in Figure 5.1. This panel gives all the tool facilities access
using form filling and menu items.

Figure 5.1: Main panel of UniFeat.

5.1 Panel description

There are five different parts corresponding to the specific task of the UniFeat tool. Each
of the five parts is described in the following subsections.

5.1.1 Loading the dataset files

In the feature selection methods, datasets are split into training and test sets. The
training set is a portion of the data that is used in the feature selection process. Moreover,
this set is employed for training the learning algorithm. On the other hand, the test
set is the unseen data that is used to evaluate the performance of the feature selection
methods. Generally speaking, benchmark datasets which are provided for the feature

11

selection domain are available in two types. In the first type, the dataset file consists of
all the samples. In the second type, the datasets are divided originally into two portions:
training and test sets. UniFeat provides support to both types of dataset files.

The “File paths” panel allows you to load all dataset files in the tool for future purposes:

1. “Random training/test sets” section: you can easily import a file of the dataset,
and then the training and test sets are drawn randomly by the tool from the input
dataset file (2/3 of the data are considered as a training set, and the other portion
is used as a test set).

2. “Training/Test sets” section: if you want to use the datasets that are divided
originally into training and test sets, this section can be used.

A specific way of representing datasets is needed for the tool. In UniFeat format, the
representation of the input dataset consists of the following parts:

• The first row of the datasets must have the names of all features.
• The next rows contain all data, with each row corresponding to a sample. A vector

of feature values describes each sample with a class label separated by commas.
Also, the class labels of all samples must be available in the last column of the
dataset.

You can easily import the dataset into the UniFeat tool as a file in comma-delimited
format (i.e., CSV file format). Figure 5.2 shows an example of a dataset in the UniFeat
format. In Figure 5.2, the input dataset contains 12 samples and four features within
the class feature. In this case, the class feature has three values, including Iris-setosa,
Iris-versicolor, and Iris-virginica.

Figure 5.2: An example of the UniFeat format of a dataset.

In addition to the dataset files, a separate file that contains the values of the class
feature must be imported into the tool. Each value of the class feature is presented in a
row. For example, for the dataset in Figure 5.2, the class label file contains three rows,
each representing a class label, including Iris-setosa, Iris-versicolor, and Iris-virginica.
It should be noted that rows of the class label file must be compatible with the class

12

Table 5.1: Filter-based feature selection methods in the UniFeat repository.

Method Supervised/Unsupervised Multivariate/Univariate

Information gain [23] Supervised Univariate
Gain ratio [23] Supervised Univariate
Symmetrical uncertainty [21] Supervised Univariate
Fisher score [8] Supervised Univariate
Gini index [30] Supervised Univariate
mRMR [27] Supervised Multivariate
Laplacian score [13] Supervised & unsupervised Univariate
RRFS [6] Supervised & unsupervised Multivariate
Term variance [35] Unsupervised Univariate
Mutual correlation [11] Unsupervised Multivariate
RSM [19] Unsupervised Multivariate
UFSACO [33] Unsupervised Multivariate
RRFSACO_1 [32] Unsupervised Multivariate
RRFSACO_2 [32] Unsupervised Multivariate
IRRFSACO_1 [32] Unsupervised Multivariate
IRRFSACO_2 [32] Unsupervised Multivariate
MGSACO [34] Unsupervised Multivariate

feature values in the dataset file.

A list of some benchmark datasets from different sources that were converted to
UniFeat format is available on the project website6.

5.1.2 Choosing a feature selection method

In the “Feature selection approaches” panel, you can simply access to the well-known and
state-of-the-art feature selection methods in the literature. In this panel, there are three
tabs corresponding to the different feature selection approaches including the “Filter,”
“Wrapper,” and “Embedded” tabs.

In the “Filter,” “Wrapper,” and “Embedded” tabs, the UniFeat repository has involved
the feature selection methods, the details of which are listed in Tables 5.1 to 5.3,
respectively.

Some feature selection methods have adjustable parameters that need to be set. The
“More option...” button is provided in the tool to set these parameters. An example
is presented in Figure 5.3 for the Laplacian score method. It should be noted that to
prevent unwanted errors, the tool automatically checks the values. In other words, when
the value of a parameter is empty or incorrect, a star symbol ‘*’ immediately appears in
front of the parameter to alert the user. In Figure 5.3, this issue arises for the “k-nearest
neighbor” parameter.

6https://unifeat.github.io/datasets.html

13

https://unifeat.github.io/datasets.html
https://unifeat.github.io/datasets.html

Table 5.2: Wrapper-based feature selection methods in the UniFeat repository.

Method Supervised/Unsupervised

Binary particle swarm optimization (BPSO) [38] Supervised
Continuous particle swarm optimization (CPSO) [38] Supervised
Particle swarm optimization version 4-2 (PSO(4-2)) [39] Supervised
HPSO-LS [24] Supervised
Simple GA [15] Supervised
HGAFS [16] Supervised
Optimal ACO [1] Supervised

Table 5.3: Embedded-based feature selection methods in the UniFeat repository.

Method Supervised/Unsupervised

Decision tree based method [20] Supervised
Random forest [3] Supervised
SVM_RFE [10] Supervised
MSVM_RFE [17] Supervised
OVO_SVM_RFE [5] Supervised
OVA_SVM_RFE [5] Supervised

Figure 5.3: An example of the parameter settings panel.

5.1.3 Feature subset sizes

In some feature selection methods, the number of selected features is a parameter that
needs to be set. The “Numbers of selected features” panel is designed to set this parameter.
Therefore, users are able to enter the different numbers of selected features altogether.
These values must be separated by commas. Figure 5.1 shows an example of how 5, 10,
15, and 20 features should be selected by the given feature selection method.

14

5.1.4 Selecting classifier

In the “Classifier” panel, you can select a classifier for evaluating the subsets of features
chosen by a given feature selection method. Four frequently used classifiers, including
support vector machine (SVM) [10], decision tree (DT) [28], naïve Bayes (NB) [35], and
k-nearest neighbors (KNN) [35], are provided to UniFeat induced from the Weka software
package [12]. Also, the “More option...” button is embedded in this panel to adjust the
parameters of the classifiers.

5.1.5 Run configuration

The “Run configuration” panel is designed for two purposes. (1) While input datasets
are divided randomly into the training and test sets, the division process should repeat
several times. This process reduces the effect of the random nature of the dataset and
improves the estimation of the performance of a feature selection method. (2) Some
feature selection methods embed randomness into their search processes and thus provide
stable results when they run several times independently.

Finally, you can click on the “Start” button to start the feature selection process. If
the user provides all the requirements of the tool with form filling, the resulting interface
will be shown. In this interface, some necessary information will be reported to the
user. This includes some information about the dataset, weights of features, classification
accuracies, execution times, and subsets of selected features in each iteration.

Figure 5.4 shows an example of the output results generated by the tool. From Figure
5.4, it is clear that two different subsets of features are selected, and the method has been
run for seven independent iterations. Note that each column corresponds to a specific
subset of selected features.

Three buttons are embedded in the resulting interface, each of which is described in
the following:

1. “View subsets” button: by clicking this button, you can see the different subsets of
selected features obtained by a given feature selection method in each iteration.
An example of this issue is shown in Figure 5.5.

2. “View training/test sets” button: by clicking this button, you can see the two
different folders with the names CSV and ARFF. The reduced datasets based on
different subsets of selected features in each iteration are saved in these folders. The
ARFF folder represents the reduced dataset in the attribute-relation file format
(i.e., ARFF, which is the standard format of the Weka software), and the CSV
folder represents the reduced datasets in the comma-delimited format (i.e., CSV
file format). Each file in these folders is saved with the format “name[i-j].format”,
where:

• name: is the type of dataset with two different values: trainSet and testSet;
• i: represents the i-th iteration of the tool;
• j: shows the number of selected features;

15

Figure 5.4: An example of the resulting interface.

Figure 5.5: An example of feature subsets file.

• format: illustrates the type of file format with two different values: arff and
csv.

For example, the “testSet[1-5].arff” file shows the reduced test set file obtained
by a given feature selection method from the first iteration based on five selected
features with the ARFF format.
These reduced datasets can be easily used to compare fairly feature selection meth-

16

ods available in the UniFeat and any other feature selection methods implemented
in the different software packages.

3. “Save results” button: You can save all information from the resulting interface as
a text file by clicking this button.

5.2 Menu items description

Four different menu items correspond to the tasks of the UniFeat tool. Each of these
menus is described in the following sections.

5.2.1 Preprocessing of the data

UniFeat supports only a specific dataset format described in Section 5.1.1; thus, a simple
preprocessing panel is provided to help users import datasets from different sources and
convert them into UniFeat format. Using the “File” → “Preprocess” menu in UniFeat,
you can import a dataset and convert it to the correct format. The preprocessing panel
is presented in Figure 5.6.

First, you should select a delimiter of the input dataset from the “Delimiter” panel,
and then you can perform the two following optional operations over the dataset:

1. “Convert to Comma delimited”: if you select this item, the current delimiter of the
data is changed to the comma-delimited.

2. “Transpose (rotate) dataset from rows to columns or vice versa”: some of the
datasets have been presented so that the columns of the data show the samples,
and the rows describe a vector of feature values corresponding to the samples. If
you select this item, the dataset is rotated from rows to columns or vice versa.

5.2.2 Drawing a diagram

Visualizing the results obtained by UniFeat in the form of diagrams can help users obtain
better interpretations. After the feature selection process is done, you can see three
diagrams, including execution time, accuracy, and error rate, accessible through the
“Diagram” menu. Moreover, the values of the results in each iteration and average values
in all iterations can be reported in these diagrams. Figure 5.7 shows an example of the
tool’s execution time and classification accuracy diagrams. As shown in Figure 5.7, users
can save diagrams in a png image format to facilitate reporting the results. This option
is available in the “File” menu.

5.2.3 Analyzing the results

To show that the experimental results are statistically significant, the Friedman test [7]
is currently provided in the UniFeat tool to analyze the results. The Friedman test is a
non-parametric test used to measure the statistical differences of methods over multiple
datasets. To apply this test, first of all, you should prepare a file as follows:

17

Figure 5.6: The preprocessing panel.

(a) Execution time diagram. (b) Classification accuracy diagram.

Figure 5.7: Diagrams of UniFeat.

• The first row of the file must have the names of methods.
• The next rows contain all the values, with each row corresponding to the results of

the methods on a dataset. Each row starts with the name of a dataset, and then
the results of each method are presented, separated by commas.

You can easily import this file into the UniFeat tool as a CSV file. Figure 5.8 shows an
example of this file in a spreadsheet. In Figure 5.8, the input file contains the classification
error rates obtained by seven methods over five different datasets.

After preparing the results file, you can open the Friedman test panel, import the file,

18

Figure 5.8: An example of the result values in a spreadsheet.

and perform the test on the input file using the “Analyze” → “Friedman test” menu in
the UniFeat tool. The Friedman test panel is presented in Figure 5.9.

Figure 5.9: The Friedman test panel.

“Worth of values” in the Friedman test panel allows the user to select the worth of
values in the file. If “ascending order” is specified, then the tool associates the best rank
to the method with the lowest value; otherwise, in the case of “descending order,” the
tool associates the best rank to the method with the highest value.

The Friedman test panel provides some helpful information, such as the average values

19

of each method over all datasets, Chi-square and F-distribution values, and critical values
of the table based on various significant levels (i.e., α parameter).

5.2.4 Help file

By using the “Help” menu in UniFeat, you can access the tool’s user manual.

20

6 Using UniFeat as a library
The easiest way to use UniFeat is through its graphical user interface. Sometimes you
use feature selection as a part of your methods, and you prefer to embed the feature
selection methods in your Java codes. Therefore, a question about the UniFeat tool has
remained: “how to use the UniFeat tool as a jar file in your own Java codes?” In this
section, we will describe this issue.

An example is presented in Appendix A to clarify how to read a dataset, call a feature
selection method, and obtain the results from your own Java codes. The codes required
to use the UniFeat as a jar file are explained in the following sections.

6.1 Reading dataset files

First, you should load all dataset files for future purposes. The input files must be
prepared in the UniFeat format for the tool described in Section 5.1.1. If only one dataset
file is available, you can easily import the codes in Figure 6.1a in your own Java code.
In Figure 6.1a, path1 is the dataset’s path, and path2 is the path of the class labels file.
Both path1 and path2 are string values.

On the other hand, if the dataset file is originally divided into training and test sets,
you can easily use the codes presented in Figure 6.1b. In Figure 6.1b, path1 is the
training set’s path, path2 is the test set’s path, and path3 is the path of the class labels
file. path1, path2, and path3 are string values.

import unifeat.dataset.DatasetInfo;
...
DatasetInfo data = new DatasetInfo();
data.preProcessing(path1,path2);

(a) One file of the dataset.

import unifeat.dataset.DatasetInfo;
...
DatasetInfo data = new DatasetInfo();
data.preProcessing(path1,path2,path3);

(b) Training and test files.

Figure 6.1: Source codes for reading the dataset.

6.2 Performing feature selection

After reading the dataset file, you can perform a given feature selection method based
on the input dataset. The general interface of the feature selection methods currently
available in the UniFeat tool can be considered in Figure 6.2.

From Figure 6.2 the following points deserve attention:

1. You can load the dataset for performing the feature selection process in two
ways: (a) read the dataset as described in Section 6.1 and then use the “load-
DataSet(DatasetInfo ob)” code, or (b) you can prepare the dataset as a matrix
of double values without the names of features in the first row. Figure 6.3 shows the
values of the dataset illustrated in Figure 5.2. In Figure 6.3, the data labels have

21

public interface featureSelection {
public void loadDataSet(DatasetInfo ob);
public void loadDataSet(double[][] data, int numFeat, int numClasses);
public void evaluateFeatures();
public int[] getSelectedFeatureSubset();
public double[] getFeatureValues();
public String validate();

}

Figure 6.2: General interface of the feature selection methods.

been changed (i.e., Iris-setosa → 0, Iris-versicolor → 1, and Iris-virginica → 2).
Then the “loadDataSet(double[][] data, int numFeat, int numClasses)” code
is used where numFeat is the number of features and numClasses is the number of
classes in the dataset.

2. The “evaluateFeatures()” function performs a given feature selection method
over the input dataset.

3. The “getSelectedFeatureSubset()” function returns a subset of features selected
by a given feature selection method.

4. The “getFeatureValues()” function is used to obtain the weights of features if
the method gives weights of features individually and ranks them based on their
relevance (i.e., feature weighting methods); otherwise, these values do not exist.

5. The “validate()” function is used to verify the validity of user input values. This
method returns an empty string if all the input values are correct; otherwise, an
error message is demonstrated to the user.

double[][] data = { {4.3, 3, 1.1, 0.1, 0},
{4.4, 2.9, 1.4, 0.2, 0},
{4.4, 3, 1.3, 0.2, 0},
{4.4, 3.2, 1.3, 0.2, 0},
{5.5, 2.3, 4, 1.3, 1},
{5.5, 2.4, 3.8, 1.1, 1},
{5.5, 2.4, 3.7, 1, 1},
{5.5, 2.5, 4, 1.3, 1},
{6.3, 3.3, 6, 2.5, 2},
{6.3, 2.9, 5.6, 1.8, 2},
{6.3, 2.7, 4.9, 1.8, 2},
{6.3, 2.8, 5.1, 1.5, 2}};

Figure 6.3: An example of the data as a matrix.

For example, suppose we want to use information gain as a feature selection method.
The required code is presented in Figure 6.4. In Figure 6.4, the sizeSelectedFeatureSubset
parameter determines the number of features selected by the method, and the data is
the input dataset obtained from Section 6.1. Also, the message keeps the possible error
message from user input values, the subset supports the subset of features selected by

22

information gain, and computeValues holds the information gain values of each feature.

import unifeat.featureSelection.filter.supervised.InformationGain;
...

InformationGain method = new InformationGain(sizeSelectedFeatureSubset);
method.loadDataSet(data);
String message = method.validate();
if (!message.isEmpty()) {

System.out.print("Error!\n " + message);
} else {

method.evaluateFeatures();
int[] subset = method.getSelectedFeatureSubset();
double[] computeValues = method.getFeatureValues();

}

Figure 6.4: Source codes for performing feature selection using information gain.

6.3 Creating reduced datasets

When the feature selection process has been done, you can create reduced datasets based
on the subset of selected features in the CSV or ARFF formats.

If you want to create training and test sets in CSV or ARFF file formats based on the
subset of selected features (i.e., the subset in Figure 6.4), you can easily embed the codes
in Figure 6.5 in your own Java code. In Figure 6.5, newPathTrainCSV is a path for the
training set in CSV format, newPathTestCSV is a path for the test set in CSV format,
newPathTrainARFF is a path for the training set in ARFF format, newPathTestARFF is a
path for the test set in ARFF format, and some temporary files will be created in tempPath.
Also, newPathTrainCSV, newPathTestCSV, newPathTrainARFF, newPathTestARFF,
and tempPath are string values. Furthermore, the sizeSelectedFeatureSubset parameter
determines the number of features selected by the method. This code is used when the
dataset files are loaded in the way explained in Figure 6.1.

import unifeat.dataset.DatasetInfo;
import unifeat.util.FileFunc;
...

FileFunc.createCSVFile(data.getTrainSet(), subset, newPathTrainCSV,
data.getNameFeatures(), data.getClassLabel());

FileFunc.createCSVFile(data.getTestSet(), subset, newPathTestCSV,
data.getNameFeatures(), data.getClassLabel());

FileFunc.convertCSVtoARFF(newPathTrainCSV, newPathTrainARFF, tempPath,
sizeSelectedFeatureSubset, data);

FileFunc.convertCSVtoARFF(newPathTestCSV, newPathTestARFF, tempPath,
sizeSelectedFeatureSubset, data);

Figure 6.5: Source codes for creating the CSV and ARFF files from the training and
test sets based on Figure 6.1.

23

On the other hand, if the dataset is loaded in the form shown in Figure 6.3, and
you want to create the CSV or ARFF files, you can easily embed the codes in Figure
6.6 in your own Java code. In Figure 6.6, newPathDataCSV is a path for the dataset
in CSV format, newPathDataARFF is a path for the dataset in ARFF format, some
temporary files will be created in tempPath, FeatureNames is an array of strings that
presents the names of features, and classNames is an array of strings that presents the
names of classes. Also, numFeature is the number of original features, and numClass is
the number of classes in the dataset.

import unifeat.dataset.DatasetInfo;
import unifeat.util.FileFunc;
...

FileFunc.createCSVFile(data, subset, newPathDataCSV, FeatureNames,
classNames);

FileFunc.convertCSVtoARFF(newPathDataCSV, newPathDataARFF, tempPath,
sizeSelectedFeatureSubset, numFeature, FeatureNames, numClass,
classNames);

Figure 6.6: Source codes for creating the CSV and ARFF files from the input array of
the dataset.

It should be noted that you can directly use the Weka software [12] to create the
ARFF files based on the created CSV files.

24

7 Extending UniFeat
The open-source nature and structure of UniFeat can help researchers use and modify
the tool to fit their research requirements and facilitate it to share their methods with
the scientific community rapidly. Therefore, another question remains about the UniFeat
tool: “how can a new feature selection method be added to the tool?” In this section, we
will answer this question in sufficient detail.

7.1 Adding a feature selection method to UniFeat

The unified structure of the feature selection package in UniFeat allows researchers to
implement their feature selection methods via the UniFeat framework. Figure 7.1 shows
the UML class diagram of the UniFeat feature selection approaches. Figure 7.1 reveals
that all the feature selection approaches inherit the properties of the FeatureSelection
abstract class. The functions provided by the FeatureSelection class were detailed in
Section 6.2.

Figure 7.1: UML class diagram of feature selection approaches in UniFeat.

The current feature selection methods in the UniFeat repository are based on the filter,
wrapper, and embedded approaches. We provide a separate class for each approach due to
its specific requirements. Further details about how to add a new algorithm–considering
its feature selection type–are provided in the corresponding sections.

25

7.1.1 Adding a new filter-based method

Filter-based methods are classified into two classes: the WeightedFilterApproach and
FilterApproach classes, considered for feature weighting and feature subset selection
methods, correspondingly. Feature weighting methods assign weights to features individ-
ually, rank them based on their relevance, and the top k features are finally returned
to form the final feature set. Information gain [23], gain ratio [23], Gini index [30], and
symmetrical uncertainty [21] are well-known methods in this category. On the other
hand, feature subset selection methods choose a set of features without using any ranking
criterion. RRFS [6], mRMR [27], RSM [19], and UFSACO [33] are examples of this
category.

The general template class for adding a new filter-based method is presented in Figure
7.2, where the following points deserve attention.

import unifeat.featureSelection.filter.WeightedFilterApproach;
import unifeat.util.ArraysFunc;

public class YourMethodName extends WeightedFilterApproach {

public YourMethodName(Object... arguments) {
super((int)arguments[0]);

}

public YourMethodName(int sizeSelectedFeatureSubset) {
super(sizeSelectedFeatureSubset);

}

@Override
public void evaluateFeatures() {

// TODO feature selection process by your method
ArraysFunc.sortArray1D(selectedFeatureSubset, false);

}

@Override
public String validate() {

// TODO validation of user input values
return "keep this method to return an error message if"

+ " there are any errors in input parameters";
}

}

Figure 7.2: General template class for adding a new filter-based method.

1. The class of your algorithm should extend one of the WeightedFilterApproach
and FilterApproach abstract classes. These two abstract classes have similar
functionalities, but WeightedFilterApproach returns a set of features associated
with weights, while the other abstract class returns only a set of features.

2. Two constructor functions are provided for each filter method. The first function

26

has a variable argument Object. The second function takes the number and types
of the arguments. If your method includes several tunable parameters, you should
define the parameters as inputs to this function. The first value passed to both of
these functions must be an integer that determines the number of features selected
by your method.

3. The “evaluateFeatures()” function is used to implement the body of your al-
gorithm. Note that this function does not have any input. It takes the required
values from the fields provided in the FeatureSelection super-class, and these fields
are initialized as the “loadDataSet()” functions are called. The body of your
algorithm should store the final feature subset in the selectedFeatureSubset ar-
ray. This array keeps the indices of the selected features, finally used as a result
of your method’s implementation. Moreover, the last line of your code is “Ar-
raysFunc.sortArray1D()” invoked to sort the features based on their indices.
The sorted array of feature indices is required to create the reduced dataset (see
Section 6.3 for further details).

4. The “validate()” function is used to verify the validity of user input values. If your
method does not include any parameter validation, you can remove this method.
An implementation of this method is presented in the FeatureSelection super-class,
where an empty message is returned to demonstrate that there is no error in the
input values.

Note that you should add the class of your method into the supervised package if your
method is a supervised algorithm; otherwise, you should add it into the unsupervised
package.

In the GUI, users can choose feature selection methods. In UniFeat, a specific class for
each approach provides a complete list of feature selection methods. All of these classes
extend the EnumType class. Therefore, you should add the name of your filter-based
method to the FilterType class, which is used for all filter-based feature selection methods.

7.1.2 Adding a new wrapper-based method

The general template class for adding a new wrapper-based method is similar to filter-
based methods. However, the first argument in the constructor functions should be the
project’s path because some temporary files will be created in this path.

Since wrapper-based methods require a given classifier to evaluate different subsets of
features during the feature selection process, four well-known and frequently-used classi-
fiers are currently collected from the Weka software [12]. UniFeat uses the training/test
evaluation and k -fold cross-validation [31] techniques to evaluate feature subsets. In
training/test evaluation, a reduced dataset is first created based on the selected subset
of features, then assessed by applying a classifier to the reduced dataset. Note that the
reduced dataset is divided into training and test sets. The training set is used to build
the classifier, and the test set is employed to evaluate the performance of the selected
features.

27

Figure 7.3 shows the declarations of the current classifiers used for training/test
evaluation. In these declarations, pathTrainData is the path of the training set in ARFF
format, and pathTestData is the path of the test set in ARFF format. Other arguments
in each function are needed for a specific classifier. All these functions are static, which
means they can be invoked directly from the TrainTestEvaluation class.

public static Criteria SVM(String pathTrainData, String pathTestData,
SVMKernelType svmKernel, double c);

public static Criteria naiveBayes(String pathTrainData, String pathTestData);
public static Criteria dTree(String pathTrainData, String pathTestData,

double confidenceValue, int minNumSampleInLeaf);
public static Criteria kNN(String pathTrainData, String pathTestData,

int kNNValue);

Figure 7.3: Declarations of the classifiers used for training/test evaluation in UniFeat.

In k -fold cross-validation, the dataset is split into k parts. The first k -1 parts are
applied in the training process to build a classifier. At the same time, the last one is
utilized in the validation process to evaluate the performance of the selected subset.
Figure 7.4 shows the declarations of the current classifiers employed in k -fold cross-
validation. In Figure 7.4, pathTrainData is the path of the training set in ARFF format.
Furthermore, kFold is an argument for defining the number of folds. All these functions
are static, which means they can be invoked directly from the CrossValidation class.

public static Criteria SVM(String pathTrainData, SVMKernelType svmKernel,
double c, int kFold);

public static Criteria naiveBayes(String pathTrainData, int kFold);
public static Criteria dTree(String pathTrainData, double confidenceValue,

int minNumSampleInLeaf, int kFold);
public static Criteria kNN(String pathTrainData, int kNNValue, int kFold);

Figure 7.4: Declarations of the classifiers used for k -fold cross-validation in UniFeat.

Recently, population-based methods have attracted a lot of attention. Most of them
belong to the wrapper approach. These methods consider the interaction between subsets
of features, and they show higher performance than filter-based methods. The three
most popular methods, including Genetic Algorithm (GA), Ant Colony Optimization
(ACO), and Particle Swarm Optimization (PSO), are implemented in UniFeat. The
simple implementation of these algorithms in UniFeat helps researchers easily have the
structures inherited in their methods to develop. For example, Figure 7.5 provides the
basic structure of GA implemented in UniFeat. In this structure, we have provided three
abstract classes, including BasicIndividual, BasicPopulation, and BasicGA, which can be
used in any GA-based feature selection method. The BasicIndividual class is employed
to represent an individual, and the BasicPopulation class is used to create a population
of individuals and apply genetic operations. Finally, BasicGA is the main class utilized
for iteration of the algorithm an allowed number of times. Moreover, BasicGA class

28

inherits the properties of the WrapperArpproach class. It is clear from Figure 7.5 that
the essential genetic operators, including crossover, mutation, selection, and replacement,
have been implemented in UniFeat. As frequently-used operators, they can be invoked
from your method.

Figure 7.5: UML class diagram of the genetic algorithm in UniFeat.

7.1.3 Adding a new embedded-based method

The general template class for adding a new embedded method is similar to wrapper-based
methods. In embedded-based methods, a given classifier is trained by an original feature
set, and the obtained results are used to specify the relevance of each feature. Therefore,
the functions shown in Figures 7.3 and 7.4 can be used in this approach.

SVM and DT are common classifiers for embedded-based methods implemented in
UniFeat. For instance, Figure 7.6 shows the abstract classes of SVM-based methods.
In Figure 7.6, there are two main functions “buildSVM_OneAgainstOne()” and
“buildSVM_OneAgainstRest()”. In the first function, there is a binary SVM for
each pair of sample classes to separate the sample of one class from that of the other. In
the second function, however, there is a binary SVM for each sample class to separate
the sample of that class from that of the other classes.

7.2 Creating a parameter settings panel in UniFeat

Some feature selection methods have tunable parameters that need to be set. Further
details on the parameters of different methods are included in Section 5.1.2. A simple
structure has been designed for developers to create a GUI panel for setting these

29

Figure 7.6: UML class diagram of SVM in UniFeat.

parameters in the UniFeat tool. Figure 7.7 shows a general template for creating a panel
in UniFeat.

After running the code provided in Figure 7.7, you will see the general panel of
parameter settings, which is illustrated in Figure 7.8a. You can change the “Panel Title,”
“Your method settings title,” and “Description of your method” by calling the functions
presented in the ParameterPanel super-class. Moreover, adding the desired components
to the “YourPanel()” constructor function will be observed in the panel illustrated in
Figure 7.8a. Furthermore, as seen in Figure 7.8a, if a user clicks on the “More” button,
Figure 7.8b will be shown. Further information about the parameters is presented in
this panel, and you can change the panel text by calling the relevant function in the
ParameterPanel class.

After creating the panel, you should add the required code to the MainPanel class in
the gui package. In this class, four important functions are presented: “getFilterAp-
proachParameters(),” “getWeightedFilterApproachParameters(),” “getWrap-
perApproachParameters(),” and “getEmbeddedApproachParameters().” They
pass input parameters, which are obtained through GUI, to a specific method. These
four functions are designed for different feature selection approaches.

30

import unifeat.gui.ParameterPanel;
import java.awt.Dialog;
import java.awt.event.KeyEvent;
import javax.swing.UIManager;

public class YourPanel extends ParameterPanel {

public YourPanel(){
super();

}

@Override
public void keyReleased(KeyEvent e) {

//TODO action when a key has been released
}

public static void main(String[] arg) {
try {

UIManager.setLookAndFeel(
UIManager.getSystemLookAndFeelClassName());

UIManager.getDefaults().put("TextArea.font",
UIManager.getFont("TextField.font"));

} catch (Exception e) {
System.out.println("Error: " + e);

}

YourPanel dtpanel = new YourPanel();
Dialog dlg = new Dialog(dtpanel);
dtpanel.setVisible(true);

}
}

Figure 7.7: General template class for creating a GUI panel in UniFeat.

(a) Parameter settings panel. (b) Information about the parameters.

Figure 7.8: GUI panel in UniFeat.

31

References
[1] M. H. Aghdam, N. Ghasem-Aghaee, and M. E. Basiri. Text feature selection using

ant colony optimization. Expert Systems with Applications, 36(3):6843–6853, 2009.

[2] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J. M. Benítez, and
F. Herrera. A review of microarray datasets and applied feature selection methods.
Information Sciences, 282:111–135, 2014.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] G. Brown, A. Pocock, M.-J. Zhao, and M. Lujan. Conditional likelihood maximisa-
tion: A unifying framework for information theoretic feature selection. Journal of
Machine Learning Research, 13(1):27–66, 2012.

[5] K.-B. Duan, J. C. Rajapakse, and M. N. Nguyen. One-versus-one and one-versus-
all multiclass svm-rfe for gene selection in cancer classification. In Evolutionary
Computation,Machine Learning and Data Mining in Bioinformatics, pages 47–56.
Springer Berlin Heidelberg, 2007.

[6] A. J. Ferreira and M. A. T. Figueiredo. An unsupervised approach to feature
discretization and selection. Pattern Recognition, 45(9):3048–3060, 2012.

[7] M. Friedman. The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association, 32(200):
675–701, 1937.

[8] Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature selection. In Interna-
tional Conference on Uncertainty in Artificial Intelligence, 2011.

[9] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182, 2003.

[10] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classifi-
cation using support vector machines. Machine Learning, 46(1-3):389–422, 2002.

[11] M. Haindl, P. Somol, D. Ververidis, and C. Kotropoulos. Feature Selection Based
on Mutual Correlation, volume 4225 of Lecture Notes in Computer Science, book
section 59, pages 569–577. Springer Berlin Heidelberg, 2006.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: An update. SIGKDD Explorations, 11(1), 2009.

[13] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. Advances in
Neural Information Processing Systems, 18, 2005.

[14] M. Hofmann and R. Klinkenberg. RapidMiner: Data Mining Use Cases and Business
Analytics Applications. Chapman & Hall/CRC, 2013.

32

[15] F. T. Hussein. Genetic algorithm for feature selection and weighting for off-line
character recognition. Thesis, University of British Columbia, 2002.

[16] M. M. Kabir, M. Shahjahan, and K. Murase. A new local search based hybrid
genetic algorithm for feature selection. Neurocomputing, 74(17):2914–2928, 2011.

[17] D. Kai-Bo, J. C. Rajapakse, W. Haiying, and F. Azuaje. Multiple svm-rfe for
gene selection in cancer classification with expression data. IEEE Transactions on
NanoBioscience, 4(3):228–234, 2005.

[18] R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger. Mlc++: a machine
learning library in c++. In Proceedings Sixth International Conference on Tools
with Artificial Intelligence. TAI 94, pages 740–743, 1994.

[19] C. Lai, M. J. T. Reinders, and L. Wessels. Random subspace method for multivariate
feature selection. Pattern Recognition Letters, 27(10):1067–1076, 2006.

[20] T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff. Embedded Methods, pages
137–165. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[21] H. Liu and H. Motoda. Computational Methods of Feature Selection. Chapman &
Hall/CRC, 2007.

[22] H. Liu and L. Yu. Toward integrating feature selection algorithms for classification
and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):
491–502, 2005.

[23] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., 1997.

[24] P. Moradi and M. Gholampour. A hybrid particle swarm optimization for feature
subset selection by integrating a novel local search strategy. Applied Soft Computing,
43:117–130, 2016.

[25] P. Moradi and M. Rostami. Integration of graph clustering with ant colony opti-
mization for feature selection. Knowledge-Based Systems, 84:144–161, 2015.

[26] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset
selection. IEEE Transactions on Computers, 26(9):917–922, 1977.

[27] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

[28] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[29] Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in
bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

33

[30] W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang. A novel feature selection
algorithm for text categorization. Expert Systems with Applications, 33(1):1–5, 2007.

[31] M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society. Series B (Methodological), 36(2):111–147, 1974.

[32] S. Tabakhi and P. Moradi. Relevance–redundancy feature selection based on ant
colony optimization. Pattern Recognition, 48(9):2798–2811, 2015.

[33] S. Tabakhi, P. Moradi, and F. Akhlaghian. An unsupervised feature selection
algorithm based on ant colony optimization. Engineering Applications of Artificial
Intelligence, 32(0):112–123, 2014.

[34] S. Tabakhi, A. Najafi, R. Ranjbar, and P. Moradi. Gene selection for microarray
data classification using a novel ant colony optimization. Neurocomputing, 168:
1024–1036, 2015.

[35] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier Science, 2008.

[36] V. Trevino and F. Falciani. Galgo: an r package for multivariate variable selection
using genetic algorithms. Bioinformatics, 22(9):1154–1156, 2006.

[37] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas. Mulan: A java
library for multi-label learning. Journal of Machine Learning Research, 12:2411–2414,
2011.

[38] B. Xue. Particle Swarm Optimisation for Feature Selection in Classification. Thesis,
Victoria University of Wellington, 2014.

[39] B. Xue, M. Zhang, and W. N. Browne. Particle swarm optimisation for feature
selection in classification: Novel initialisation and updating mechanisms. Applied
Soft Computing, 18:261–276, 2014.

[40] K. Yu, W. Ding, and X. Wu. Lofs: A library of online streaming feature selection.
Knowledge-Based Systems, 113:1–3, 2016.

34

A An example source code for feature selection
A simple Java program that performs feature selection using the information gain method
implemented in the UniFeat tool and displays the results is presented below:

1 import unifeat.dataset.DatasetInfo;
2 import unifeat.featureSelection.filter.supervised.InformationGain;
3 import unifeat.util.FileFunc;
4

5 public class Main {
6 public static void main(String[] args) {
7 //reading the datasets files
8 DatasetInfo data = new DatasetInfo();
9 data.preProcessing("data/trainSet.csv", "data/testSet.csv", "data/classLabels.txt");

10

11 //printing some information of the dataset
12 int sizeSelectedFeatureSubset = 2;
13 System.out.println(" no. of all samples : " + data.getNumData()
14 + "\n no. of samples in training set : " + data.getNumTrainSet()
15 + "\n no .of samples in test set : " + data.getNumTestSet()
16 + "\n no. of features : " + data.getNumFeature()
17 + "\n no. of classes : " + data.getNumClass());
18

19 //performing the feature selection by information gain method
20 InformationGain method = new InformationGain(sizeSelectedFeatureSubset);
21 method.loadDataSet(data);
22

23 String message = method.validate();
24 //checking the validity of user input values
25 if (!message.isEmpty()) {
26 System.out.print("Error!\n " + message);
27 } else {
28 method.evaluateFeatures();
29 int[] subset = method.getSelectedFeatureSubset();
30 double[] infoGainValues = method.getFeatureValues();
31

32 //printing the subset of selected features
33 System.out.print("\n subset of selected features: ");
34 for (int i = 0; i < subset.length; i++) {
35 System.out.print((subset[i] + 1) + " ");
36 }
37

38 //printing the information gain values
39 System.out.println("\n\n information gain values: ");
40 for (int i = 0; i < infoGainValues.length; i++) {
41 System.out.println(" " + (i + 1) + " : " + infoGainValues[i]);
42 }
43

44 //creating reduced datasets as the CSV file format
45 FileFunc.createCSVFile(data.getTrainSet(), subset, "data/newTrainSet.csv",

data.getNameFeatures(), data.getClassLabel());↪→
46 FileFunc.createCSVFile(data.getTestSet(), subset, "data/newTestSet.csv",

data.getNameFeatures(), data.getClassLabel());↪→
47

48 //creating reduced datasets as the ARFF file format
49 FileFunc.convertCSVtoARFF("data/newTrainSet.csv", "data/newTrainSet.arff", "data",

sizeSelectedFeatureSubset, data);↪→
50 FileFunc.convertCSVtoARFF("data/newTestSet.csv", "data/newTestSet.arff", "data",

sizeSelectedFeatureSubset, data);↪→
51 }
52 }
53 }

35

	Acknowledgments
	About the Authors
	Introduction
	Background
	Introduction to UniFeat
	Download and run
	The UniFeat exploration
	Panel description
	Loading the dataset files
	Choosing a feature selection method
	Feature subset sizes
	Selecting classifier
	Run configuration

	Menu items description
	Preprocessing of the data
	Drawing a diagram
	Analyzing the results
	Help file

	Using UniFeat as a library
	Reading dataset files
	Performing feature selection
	Creating reduced datasets

	Extending UniFeat
	Adding a feature selection method to UniFeat
	Adding a new filter-based method
	Adding a new wrapper-based method
	Adding a new embedded-based method

	Creating a parameter settings panel in UniFeat

	References
	An example source code for feature selection

